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ABSTRACT

Satoshi’s original vision was to build a peer-to-peer protocol for transferring value
between any two people in the world. However, over 90% of trading volume today occurs
on centralized exchanges due to the fragmentation of assets across different blockchains.
Trustless cross-chain swaps would realize the original vision of crypto as a replacement for
these centralized financial institutions. We propose Rift, a protocol that enables trustless
swaps between Bitcoin and Ethereum by unlocking ERC20s to a market maker upon
verifying a zero-knowledge proof that they paid a user a specified amount of BTC. In
addition to the core escrow-unlock mechanism, we outline an open auction system that
matches users with the market maker providing the best exchange rate for their swap.

1. INTRODUCTION

Bitcoin [Nak08] and Ethereum [Butl4] are the two largest blockchains by market cap, yet
there is no way to trade between them without relying on trusted third parties with lower security
guarantees than the source and destination chains. Trustless cross-chain swaps have been achieved
between EVM chains [Xie+22], but swaps between Bitcoin and other VMs are much more complex
due to Bitcoin’s lack of smart contracts and the prohibitively high gas cost of verifying the state
of Bitcoin on another chain using a standard light client. Users who want to trade native BTC for
ERC20s [Vog+15] today have five options, all of which suffer from the same core problem of being
far less secure and decentralized than the underlying networks that users hold assets on:

1. Centralized Exchanges (CEXs) - (Binance, Coinbase, ChangeNow, etc.) are controlled
by single entities and have historically struggled to manage user funds, resulting in multiple
bankruptcies and financial losses (e.g. Bybit [IC325], FTX [Inv23], Celsius [Cel22]). CEXSs are
also highly regulated, force KYC, rate-limit swapping, and can freeze customer funds at will.

2. Over-The-Counter Trading Desks - (Galaxy, Flow, Wintermute, FalconX, GSR, etc.)
are able to offer better rates than CEXs for large trades, but they are fully centralized and
inherit the same security risks.

3. Alternative Layer 1 Blockchains - (THORchain [Tho20], Chainflip [Har+24], NEAR
Chain Abstraction [Nea24], etc.) are blockchains used for message passing and/or trade
execution between source and destination chain. They are far less decentralized than Bitcoin
and Ethereum [Eth25, MPS25, CW25], and have far less capital staked [Tho25] in the network,



leading to lower capital efficiency, economic security, and swapping limits for users.

4. Hashed Timelock Contracts - (Garden Finance [Gar24]) in their purest form remove
the need for a custodian, but require a two way handshake that depends on both parties being
online to complete a swap. In practice, this necessity for simultaneous interaction significantly
limits usability, leading production implementations to rely on centralized signing services to
manage these interactions. Despite having higher security guarantees than CEXs and OTC
desks, users are still exposed to similar censorship and regulatory risks.

5. Bridged Bitcoins - (WBTC [Wbt19], cbBTC [CB24], tBTC [Thr24], renBTC, etc.) are a
useful primitive, but custody Bitcoin in a high-risk N-of-M multisig wallet where if N keys are
compromised, all collateral can be stolen [Coi22]. Additionally, since the multisig ownership is
often centralized, they inherit the same censorship and regulatory risks as CEXs. This has
already resulted in the collapse of renBTC, which once held >$1b in collateral [Ren23].

In addition to the systems above, there were a number of light-client-based designs that
retained higher security guarantees at the cost of increased transaction fees. While innovative, this
tradeoff ultimately made them infeasible to run sustainably in production.

1. Stateful Light Clients - (BTCRelay [Chol6], zkRelay [Wes+20]) eliminate the need for a
custodian by implementing an on-chain light client with a Bitcoin SPV proof. Solutions such
as BTCRelay proved to be prohibitively expensive, as they required continuously submitting
Bitcoin headers to an Ethereum smart contract. Zero-knowledge (ZK) based solutions, such
as zkRelay, solved this with batched block proofs that could be verified in a single on-chain
transaction, but could never enter production due to the complexity of managing trusted
setups of circuits for each block batch size.

2. Stateless Light Clients - (Summa [Prel8]) present a sliding window of Bitcoin block
headers, rather than storing every header in contract. While eliminating the need for relayers
to keep the light client constantly up to date, transactions are actually more expensive if
usage is high, due to re-verification of the same set of blocks. Summa also outlined a novel
cross-chain auction mechanism, but it was limited to receiving BTC, and also required users
to have >0 BTC in order to start an auction.

With security via self-custody and decentralization as the core ethos of blockchain technology,
and the increasing demand for swaps between Bitcoin and other ecosystems, the need for a trustless
cross-chain swapping protocol is more apparent than ever.

2. SOLUTION

Rift implements an on-chain Dutch auction with a novel Bitcoin ZK light client and payment
verification scheme, enabling users to swap ERC20s for native BTC without custodians. A user
creates an Order by depositing an ERC20 into the auction contract and specifying a list of market
makers (MMs) who can bid for their asset. This auction can theoretically be for any ERC20, but to
simplify quoting, we’ll assume a bridged Bitcoin variant, such as cbBTC, for the remainder of this
paper. Once the price reaches a profitable threshold for a MM, they call claimAuction to lock the
user’s ERC20 and gain an exclusive right to complete the swap until the lockup expires. A “free



option” is prevented here by using a bridged Bitcoin as the escrowed asset, ensuring the option value
is negligible. The MM then pays the user BTC to fill the Order and start the settlement process.

After BTC is sent, anyone can generate and submit a ZK proof of this payment by calling
submitPaymentProofs, providing the proposed transaction and proof of a valid Bitcoin state change
to the light client contract. The protocol verifies four invariants before an Order is considered valid:

1. The proposed block is part of the longest Bitcoin chain - verified by ensuring
each new block since the last light-client update follows Bitcoin’s Proof-of-Work consensus
mechanism, and that the proposed block has at least N confirmation blocks built on top of it.

2. The proposed block contains the MM’s transaction to the user’s wallet address -
verified with a Bitcoin SPV proof.

3. The user was paid the correct amount of BTC - verified by ensuring that there exists
a UTXO in the MM’s transaction equal to the satoshis specified by the user.

4. The transaction has the order data inscribed - verified by confirming the order hash
is a member of the expected orders set, and the hash of this set is inscribed using OP_RETURN
[Bit25].

Once a payment proof is verified, there is a short challenge period where heavier work chains
can be presented before funds are released from escrow. This is meant to prevent a malicious user
from exploiting a significantly out-of-date or “stale” Bitcoin light client. Assuming no challenge,
settlelrders is called, releasing the user’s ERC20 to the MM. The new Bitcoin state, represented
by a Merkle Mountain Range (MMR) root [Tod16], is stored in the light client smart contract to be
used as a circuit input for future payment verifications. If a longer chain is presented during the
challenge period, a heavier work chain containing the MM’s transaction must be presented before
the lockup, otherwise the user will be refunded.

Assuming the light client state remains relatively up to date, we can now perform a trustless
swap between the chains, since faking a payment would require having enough hash power to out-mine
the Bitcoin network.

3. SWAP FLOW

The core protocol deals with auctioning off a bridged Bitcoin ERC20 for BTC. While focusing
on a single asset is most capital efficient from an MM’s perspective, many users want to trade arbitrary
ERC20s for BTC. By leveraging on-chain liquidity (with DEX aggregators, such as Paraswap [Vel25])
and multicall contracts (like Bundler3 [Mor25]), it’s possible to support this flow with no additional
signatures by the user. The possible swap flows are outlined below.

3.1 USER STARTS WITH BRIDGED BITCOIN

1. A user signs a cbBTC permit to GeneralAdapterl, allowing it to transfer cbBTC on the user’s
behalf.



permit(
owner: msg.sender
spender: GeneralAdapterl
value: ...
deadline: ...
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2a. The user then initiates an atomic multicall transaction using Bundler3, passing auction params.
2b. GeneralAdapterl transfers cbBTC from the user to RiftAuctionAdapter.
2¢. RiftAuctionAdapter deposits the user’s cbBTC after calling startAuction on BTCDutchAuctionHouse.
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a) {...tokenTransferParams },
{...auctionParams }
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3. Once the auction reaches the target price for a MM, and they call claimAuction to lock the user’s
tokens in RiftExchange.

createOrder( claimAuction(
{..orderParams } auctionld: ...

) safeBlockPeaks: ...
safeBlockSiblings: ...
)

RiftExchange BTCDutchAuctionHouse Market Maker

4. The MM sends BTC to the user.

-

User Market Maker

5. After b Bitcoin confirmation blocks, the MM submits the proof to RiftExchange, updating the
light client MMR root and initiating the challenge period.

updateRoot( submitPaymentProofs(
prevRoot: ... swapData: { ...},
newRoot: ... blockData: { ... },
newTip: ... proof
) )
BitcoinLightClient RiftExchange Market Maker

6. After the challenge period ends, the MM calls settleOrders to unlock the escrowed user funds,
minus a fee to the protocol.

settleOrders(

E orderParams: { ... }
)
L 4

RiftExchange Market Maker

3.2 USER STARTS WITH AN ARBITRARY ERC20

1. A user signs an ERC20 permit2 [Uni22] to GeneralAdapterl.



permit(
owner: msg.sender
permitData: ...

. signature: ...
)
A P -

User GeneralAdapterl

2a. The user then initiates an atomic multicall transaction using Bundler3, passing a swap route
and auction params.

2b. GeneralAdapterl transfers the ERC20s from the user to ParaswapAdapter.
2¢. ParaswapAdapter swaps the ERC20s for cbBTC and sends the tokens to RiftAuctionAdapter.
2d. RiftAuctionAdapter deposits the user’s cbBTC after calling startAuction on BTCDutchAuctionHouse.

User

multicall([
{..tokenTransferParams },
{...swapParams },
{...auctionParams }
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receiver: ParaswapAdapter endToken: cbBTC " endRate: ...
amount: ... receiver: RiftAuctionAdapter : {...auctionParams }

minOutput: ... » )
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3. Continue from step 3 of bridged Bitcoin flow.



3.3 MARKET MAKER NEVER FILLS ORDER

1-3. Start from bridged Bitcoin flow.
4. After the lockup expires, refundOrder is called, returning cbBTC to the user.

refundQOrder(

orderParams: { ...}
‘ )

User RiftExchange

3.4 LONGER CHAIN IS PRESENTED DURING CHALLENGE PERIOD

1-5. Start from bridged Bitcoin flow.

6. A heavier work chain is presented to the light client, causing the MMR, root to be updated. If the
new chain includes the MM’s payment block, no action is needed. If the new chain does not include
the payment block, the MM has the remainder of the lockup period to submit a transaction and
light client update of a heavier work chain.

updateRoot(

prevRoot: updateLightClient(

blockData: { ... },

newRoot: ...
= i - P -
) )

BitcoinLightClient RiftExchange Anyone

4. PROTOCOL

The protocol consists of three solidity smart contracts, and two ZK circuits that are aggregated
into a single proof using SP1 [Suc24]. The components and their functionality are outlined below.

4.1 BITCOIN AUCTION HOUSE CONTRACT

BTCDutchAuctionHouse is where the user’s cbBTC is auctioned off to a MM. startAuction
is called as the last step of the Bundler3 multicall, passing in the Dutch auction starting and ending
range, the duration in blocks, and the MMs that can participate in the auction.



struct DutchAuctionParams {
utnt256 startBtcOut; // The starting amount of BTC the auction will sell
uint256 endBtcOut; // The ending amount of BTC the auction will sell
uint256 decayBlocks; // The number of blocks price will decay over
uint256 deadline; // The deadline of the auction (as a timestamp)
address fillerWhitelistContract; // The whitelist contract to use for
validating the filler

Once the rate reaches a profitable threshold for an online MM, and they can create an Order
by calling claimAuction, passing their payout address and safe block data specified by the user’s
leaf and roots in the original auction parameters. This will create an Order and escrow the funds in
RiftExchange. If the auction reaches the deadline without being filled, it becomes expired and the
user can withdraw their funds using refundAuction.

4.2 RIFT EXCHANGE CONTRACT

RiftExchange is responsible for managing Orders from creation to settlement. An Order is
created when a MM expresses intent to swap at a specified exchange rate by calling claimAuction
on BTCDutchAuctionHouse, resulting in the user’s cbBTC being escrowed in RiftExchange until
the MM actually fills the order.

struct Order {

uint256 index; // Where in the order hash array this order is

uint64 timestamp; // When the order was created

uint64 unlockTimestamp; // When the order can be refunded (ie. No valid
payment was submitted)

uint256 amount; // Amount of ERC20 tokens to be transferred to °
designatedReceiver”™ upon settlement

uint256 takerFee; // The taker fee prepaid by the order creator, given
to the protocol upon settlement

uint64 expectedSats; // The expected amount of satoshis that MUST be
sent to “bitcoinScriptPubKey  before the order can be settled

bytes bitcoinScriptPubKey; // The scriptPubKey of the address that will
receive the BTC output on the Bitcoin chain

address designatedReceiver; // The address that will receive the ERC20
tokens upon settlement

address owner; // The address that created the order



bytes32 salt; // A random number used to seed the order hash, to prevent
replays of previous payments

uint8 confirmationBlocks; // The number of blocks that must be built on
top of the block containing the payment before the order can be
settled

uint64 safeBitcoinBlockHeight; // Historical Bitcoin block height
considered safe from reorganization by the order creator

OrderState state; // The state of the order ("Created”, “Settled ™ or °
Refunded)

Once the MM sends Bitcoin to the user, they submit a proof of the payment by calling
submitPaymentProofs, passing the proof data and the block data needed for the light client update.
Assuming the payment proof and light client update are valid, the challenge period kicks off, after
which the MM can claim their funds by calling settleOrders. If the MM never fills, the user can
call refundOrder to withdraw their funds after the lockup period ends. If there is a longer chain
presented that no longer includes the payout transaction to the user, it can be submitted during the
challenge period by calling updateLightClient, requiring the MM to submit a new chain to start
a new challenge period and claim attempt. settleOrders, refundOrder, submitPaymentProofs,
and updateLightClient can be called by anyone, although no one other than the affected party is
incentivized to do so. For convenience, we call these on behalf of users when the relevant condition
applies. Users who don’t want to rely on Rift infrastructure being online to safely interact with the
protocol can run their own Hypernode [Rif25], which is an open-source node software that anyone
can use to index Bitcoin and generate proofs.

4.3 BITCOIN LIGHT CLIENT CONTRACT

BitcoinLightClient is a stateful light client that utilizes an MMR tree to store the current
Bitcoin state. In the MMR tree, each Bitcoin block is a leaf that is combined through “peak bagging’
to generate the MMR root. The contract stores the current mmrRoot, and a mapping of all previous
“checkpoint” blocks, which are the chain tips each time the mmrRoot was updated. An example
checkpoint block is below:

)

struct BlockLeaf {
bytes32 blockHash; // The hash of the Bitcoin block
uint32 height; // The height of the Bitcoin block
uint256 cumulativeChainwork; // The cumulative chainwork of the Bitcoin
block

RiftExchange calls updateRoot whenever there is a light client update, which verifies that
the new tipBlockLeaf has greater chain work than the latest checkpoint block before updating
the root. As part of this function call, a valid light client state transition proof must be pre-



sented, otherwise the entire updateLightClient call will revert. In addition to updating the light
client, RiftExchange calls verifyBlockInclusion on Order creation that verifies that the safe
block is part of the chain represented by the current mmrRoot. When the Order is being settled,
verifyBlockInclusionAndConfirmations checks the same inclusion for the MM’s payment block,
in addition to confirming it has at least N confirmation blocks built on top of it.

4.4 LIGHT CLIENT STATE TRANSITION CIRCUIT

The Light Client State Transition Circuit works in tandem with BitcoinLightClient to
ensure block updates submitted by a prover follow the consensus rules of Bitcoin. This is done
through a series of invariant checks in the circuit:

1. The sha256 (sha256 (header)) for parent and retarget blocks matches the hash stored in
the corresponding BlockLeaf of the current MMR tree.

2. The chain of headers from the parent block to the new_tip block follows Bitcoin consensus
rules (references previous blocks and satisfies proof of work).

3. The chain work of the new_tip is greater than the current_tip.

4. The parent, retarget, and current_tip blocks are part of the current MMR tree.

Under most circumstances, parent and current_tip will be the same block. In the case of a
reorg, parent is the block that the proof is being built upon, and everything until current will be a
disposed leaf of the MMR tree. In the case of a reorg, there are two additional invariants:

1. disposed_leaves_count == current_tip.height - parent.height

2. The MMR root at the parent block and corresponding parent_peaks produce the
current_root after appending all disposed leaves.

Once these invariants are satisfied, each new leaf is appended to the parent to produce the
new_root. All new leaves are then combined into a single hash that the prover passes in calldata
when verifyBlockInclusion is called to verify the existence of the leaf data. The final state change
is then returned to commit to the witness data.

public_input = {
current_root: [u8; 32], // current MMR root
new_root: [u8; 32], // new MMR root
new_leaves_hash: [u8; 32], // hash of new leaves between current and new
root
new_tip: BlockLeaf // new tip block of Bitcoin
}
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4.5 PAYMENT VERIFICATION CIRCUIT

The Payment Verification Circuit ensures the MM is correctly filling Orders by validating the
structure of their Bitcoin transaction. The circuit verifies three invariants:

1. The MM’s transaction is included in a specified block root (Bitcoin SPV)
2. The transaction output is sending the user the exact sats output specified in the Order

3. The Order hash is included in the set of expected Orders, and the aggregate hash is inscribed
in the transaction using OP_RETURN.

The final Order and transaction data are then returned to commit to the witness data.

public_input = {
order_hash: [u8; 32], // hash of user's order
bitcoin_block_hash: [u8; 32], // payment block hash
bitcoin_tx_id: [u8; 32], // payment transaction id

3

5. SECURITY CONSIDERATIONS

Given the objective of creating a maximally secure exchange between Bitcoin and Ethereum,
it is critical to discuss all possible attack vectors and how the protocol design prevents them.

1. Double claiming ERC20 for a single BTC payment - Prevented by the aggregate order hash
inscribed in the OP_RETURN of the Bitcoin transaction, which binds each transaction to a specific set
of Orders. Submitting a proof to claim user funds would fill the Order, thus preventing future use.

2. BTC payment is re-orged after MM claims ERC20 - Prevented by the user specifying
the number of confirmation blocks required for a Bitcoin transaction to be considered valid. For the
majority of transactions, this can be two blocks, as there hasn’t been a longer re-org in 5+ years
[Sta23, Bit17]. For high value transactions, this can be increased to meet confidence requirements of
the user, with 4-6 typically considered “irreversible” in modern Bitcoin.

3. Submitting invalid Bitcoin blocks to the Light Client - Prevented by the state transition
circuit ensuring the proposed blocks are valid and part of the longest chain. To successfully create a
longer chain, an attacker would need more computational mining power than the Bitcoin network
itself, or a stale light client far behind the actual Bitcoin network.

4. Submitting fraudulent Bitcoin blocks to a stale Light Client - In the case of a stale light
client (no transactions for an extended period of time, resulting in an out of date tip block relative to
the canonical Bitcoin chain), an attacker with sufficient computational power could mine fraudulent
blocks that contain a payment to a user in an attempt to claim their escrowed asset. This attack
becomes easier as the light client becomes more out of date. While a stale light client indicates no
recent transactions, meaning no funds immediately available to steal, the next user that deposits
could be vulnerable. To prevent this, funds are not released immediately after a proof is accepted.
Instead, there is a challenge period where anyone can submit a heavier work chain, invalidating the
fraudulent transaction. This relies on at least one honest online party who can submit a challenge to
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the light client with block data from the canonical Bitcoin chain. In order to do this, the challenge
period must be long enough to generate a proof for the number of blocks between the light client
tip and Bitcoin’s tip, which we’ll call Ab. To benchmark the minimum time to generate a proof, we
chose the minimum hardware that supports CUDA proving with our SP1 circuits (8 vCPUs, 32 GiB
RAM, and CUDA enabled GPU with 24 GiB of VRAM). This is an accessible minimum that can be
achieved on cloud providers (such as AWS with a gb.2xlarge instance that has a NVIDIA A10G
GPU), or with high end consumer cards such as RTX 3090 or newer. The results of the benchmark
on 1000 runs on AWS, with the resulting time to prove T, are below:

Blocks Time Standard Deviation

1 58.28s 407ms
6 58.47s 380ms
24 58.67s 313ms
144 1.05m 266ms
288 1.15m 409ms
576 1.35m 420ms
1008 1.66m 473ms
2016 2.37m 720ms

T,(x) = 0.0418z + 57.5842
R? = 0.9997

The final challenge period for Ab blocks can be defined below, with a 10% buffer applied for
deviation in machine proof generation time, in addition to the finality time of the EVM in which the
contract is deployed.

Tchallenge — 1.1x Tp(Ab) + fcvm

5. Multiple MMs paying the same user and only one being able to claim the ERC20 -
Prevented by the auction having only one winning MM, and the resulting Order can only pay out
the auction winner.

6. Order lock-up expires after the MM has paid, but before they can claim the ERC20 -
An early-expiring lock-up would result in the escrowed ERC20 being returned to the user after they
had been paid. The protocol therefore sets the lock-up timer so that, with a one-in-a-billion failure
probability (¢ = 107?), the following three events complete before expiry:

7. k Bitcoin confirmations

We treat block confirmation times as a homogeneous Poisson process with rate A = 1/600s,
based on practical analysis of block times [Nak08, Bow+18, Vuol9]. Under this assumption,
the waiting time for k blocks is Erlang-distributed. We pre-compute the (1 — €) quantile of
the Erlang(k, A) distribution for every 1 < k < 255. Empirically, this captures the entire
distribution of inter-arrival times for up to 6 sequential blocks in the ASIC-mining era (post-
block 337,340). To keep on-chain arithmetic cheap, we fit the computed quantiles with a
square-root—linear function:

t(k) = Bo + B1VE + Bk

which results in:

t(k) = 142.59 4 53.92vk + 10.32k

With a RMS error is 0.01933% of the mean.
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7. Proof generation

Defined above as:

Tchallenge = 11X Tp(Ab) + fcvm

773. Challenge window

Since the lock-up is computed at the time an Order is created, we do not yet know the light
client height where a potential challenge period would start. To remain safe in all cases, we
use the worst-case value of Ab = 2016. Consequently, an Order should only be created if:

(hgrc + k) — hie < 2016

where hpTc is the observed Bitcoin height, hy,c is the on-chain light-client height, and & is the
requested confirmation count. Otherwise, an auxiliary light-client update should be submitted
first.

Combining the proof generation and challenge window yields the fixed term:

2% 7_(:hallcngc(2016)

Along with the confirmations, the lock-up timer is:

TleCk,up =2x Tchallenge(2016) + t(k)

which ensures that the Bitcoin payment is under k confirmation blocks with 99.9999999%
confidence, the MM has time to post a proof, and there exists a full dispute window remains
before the escrow can be withdrawn.

7. MM has a free option on locked user funds - Prevented by using a bridged Bitcoin as the
underlying escrowed asset, making the option value negligible.

8. MM locking user funds and never sending BTC (Denial of Service) - Prevented by the
user passing a whitelist of MMs who can bid for their order. This ensures they can opt into trading
with only reputable MMs who always fill orders they commit to, while retaining permissionless of
the system. An alternative design would be to have all auctions be open, with a minimum stake
requirement to bid as a MM. This introduces a major pricing challenge: a stake that is too low
will result in cheap DOS attacks, especially in the case of notable individuals with doxxed wallets
who could be infinitely denied from using the protocol. On the other hand, a stake that is too high
decreases capital efficiency for MMs significantly. Since the majority of volume will come from a
handful of MMs, we opted for the simpler design rather than over optimize for long tail MM discovery.

6. LIMITATIONS AND FUTURE WORK

There are a number of limitations with the current protocol that could be improved in
subsequent iterations:

1. Bitcoin taker support - The protocol outlined is designed around EVM takers and Bitcoin
makers. While it theoretically could work in the opposite direction, the current design is limited
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by the “walk away” problem of a Bitcoin taker. Specifically, after agreeing to a price, an EVM
maker would need to lock their ERC20 in RiftExchange until they received payment. In the current
protocol, there is no way to prevent a Bitcoin taker from walking away from this agreed-upon
transaction, since the maker cannot use a whitelist (as there are many takers who would have no
reputation). An alternative design could be to require the taker to deposit some collateral before the
maker locks their capital, but this is impractical as many Bitcoin takers would not have ERC20s
(in addition to being a bad user experience). One proposed solution around this is using a “proxy
wallet”, which the taker sends BTC to, and forwards the BTC to the maker once they have deposited
the ERC20. This forwarding logic could be run inside the taker’s wallet, or a TEE [Cos+16] to
guarantee their funds could not be stolen. In a future where OP_CAT [Hei+24] is merged into Bitcoin
core, there are several alternate designs that could verify another chain’s state on Bitcoin to spend
the taker’s UTXO and achieve the same result.

2. Arbitrary ERC20 auctions - In order to simplify market making, the current design uses a
bridged Bitcoin as the underlying asset for auctions. This is limiting for users who want to do large
trades using other major assets (ETH, USDC, USDT), as they have to use on-chain routes to get
to the bridged Bitcoin, which can result in significant slippage for large trade sizes. Additionally,
using a bridged Bitcoin for the lockup period exposes the user to asset risk for at least a two block
period, unlike a chain’s native token, such as ETH. An alternative is to allow for any ERC20 to
be auctioned to MMs. This can be trivially supported at the contract level, but should be paired
with a delta-neutral shorting strategy of the ERC20 to account for any price divergence between
order filling and redemption. Additionally, a stake significantly greater than the option value of the
ERC20/BTC pair would be required to ensure it was always unprofitable to delay payment (e.g. not
immediately exercising the option). In the case of pairs that have non-zero option values due to price
divergence (e.g. ETH/BTC, USDC/BTC), one possible solution would be to require MMs to stake
x% of the swap size, which is slashed if they don’t fill the order.

3. Single MMR proof for Orders in the same block - MMs who fill multiple orders in a single
block currently re-verify the same block N times in the BitcoinLightClient, increasing the gas cost
of verification. This disproportionately affects low-value swaps, where a larger percentage of the
swap is spent on gas. Gas can be saved here by optimizing the struct that MMs submit to identify
what Orders they are filling with a specific UTXO.

4. Inscribe aggregate Order hash using Taproot witness - Paying requires the MM to inscribe
the Order hash in a Bitcoin transaction, and taproot witness storage is cheaper than using OP_RETURN.
Verifying this data is a more involved circuit implementation, but a clear optimization.

5. Combine approval and multicall into a single transaction using EIP-7702 - The permit
call at the beginning of the swap flow can be combined with the Bundler3 transaction using EIP-7702
[But+24], creating a one-click experience for future dapp and wallet users.

7. CONCLUSION

In summary, we’ve proposed a protocol that allows for peer-to-peer, trustless swaps between
Bitcoin and Ethereum without relying on security-compromising intermediaries. We combined a
novel Bitcoin ZK light client implementation with on-chain auction and escrow smart contracts to
create a cross-chain swapping protocol that ensures the same level of security as the Bitcoin and
Ethereum networks, as it does not rely on staked capital or third parties to submit proofs. Rift can
be deployed to any Ethereum Virtual Machine (EVM) chain, allowing liquidity to flow seamlessly
between the Bitcoin and Ethereum ecosystems for the first time.

14



[Nak08]

[But14]

[Xie+22]

[Vog-+15]
[1C325)
[Inv23]
[Cel22]
[Tho20]

[Har+24]
[Nea24]

[Eth25]
[MPS25]
[CW25]
[Tho25]
[Gar24]
[Wht19]

[CB24]
[Thr24]

[Coi22]

[Ren23]

REFERENCES

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer FElectronic Cash System. 2008. https:
//bitcoin.org/bitcoin.pdf.

Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Ap-
plication Platform. 2014. https://ethereum.org/content/whitepaper/whitepaper-
pdf/Ethereum_ Whitepaper - Buterin_ 2014.pdf.

Tiancheng Xie, Jiexi Zhang, Zihan Cheng, Fan Zhang, Yanzhi Zhang, Yingian Jia, Dan
Boneh, and Dawn Song. “zkBridge: Trustless Cross-chain Bridges Made Practical.” 2022.
https://doi.org/10.1145/3548606.3560652.

Fabian Vogelsteller and Vitalik Buterin. ERC-20 Token Standard. 2015. https://eips.eth
ereum.org/EIPS /eip-20.

IC3. North Korea Responsible for $1.5 Billion Bybit Hack. 2025. https://www.ic3.gov/
psa/2025 /psa250226.

Investopedia. The Collapse of FTX: What Went Wrong With the Crypto Fxchange?
2023. https://www.investopedia.com /what-went-wrong-with-ftx-6828447.

Celsius Network LLC et al. Bankruptcy Proceedings. 2022. https://cases.stretto.com/ce
Isius/.

THORChain. A Decentralized Liquidity Network. 2020. https://github.com/thorchain
/Resources/blob/master/Whitepapers/ THORChain- Whitepaper-May2020.pdf.

Simon Harman. Chainflip Whitepaper. 2024. https://assets.chainflip.io/whitepaper.pdf.

NEAR. What is Chain Abstraction? 2024. https://docs.near.org/build/chain-abstractio
n/what-is.

Etherscan. Validators | Mainnet Beacon Chain (Phase 0). 2025. https://beaconscan.c
om/validators (accessed May 11, 2025).

MiningPoolStats. Bitcoin (BTC) SHA-256 Mining Pools. 2025. https://miningpoolstats.
stream /bitcoin (accessed May 11, 2025).

CoinWarz. Bitcoin Hashrate Chart—BTC Hashrate 621.48 EH/s. 2025. https://www.co
inwarz.com/mining/bitcoin/hashrate-chart (accessed May 11, 2025).

THORChain. THORChain Network Explorer. 2025. https://thorchain.net/nodes
(accessed May 11, 2025).

Garden Finance. Order Lifecycle Documentation. 2024. https://docs.garden.finance/dev
elopers/core/order-lifecycle.

wBTC. Wrapped Tokens Whitepaper. 2019. https://wbtc.network/assets/wrapped-
tokens-whitepaper.pdf.

Coinbase. ¢bBTC. 2024. https://www.coinbase.com/cbbtc.

Threshold Network. tBTC' Bitcoin Bridge Documentation. 2024. https://docs.threshold
.network /applications/tbtc-v2.

Cointelegraph. Awie Infinity’s Ronin Bridge Hacked for Over $600M. 2022. https:
//cointelegraph.com/news/axie-infinity-s-ronin-bridge-hacked-for-over-600m.

Ren Project. RenBTC Collapse - RenBridge. 2023. https://bridge.renproject.io/.

15


https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1145/3548606.3560652
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://www.ic3.gov/psa/2025/psa250226
https://www.ic3.gov/psa/2025/psa250226
https://www.investopedia.com/what-went-wrong-with-ftx-6828447
https://cases.stretto.com/celsius/
https://cases.stretto.com/celsius/
https://github.com/thorchain/Resources/blob/master/Whitepapers/THORChain-Whitepaper-May2020.pdf
https://github.com/thorchain/Resources/blob/master/Whitepapers/THORChain-Whitepaper-May2020.pdf
https://assets.chainflip.io/whitepaper.pdf
https://docs.near.org/build/chain-abstraction/what-is
https://docs.near.org/build/chain-abstraction/what-is
https://beaconscan.com/validators
https://beaconscan.com/validators
https://miningpoolstats.stream/bitcoin
https://miningpoolstats.stream/bitcoin
https://www.coinwarz.com/mining/bitcoin/hashrate-chart
https://www.coinwarz.com/mining/bitcoin/hashrate-chart
https://thorchain.net/nodes
https://docs.garden.finance/developers/core/order-lifecycle
https://docs.garden.finance/developers/core/order-lifecycle
https://wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://www.coinbase.com/cbbtc
https://docs.threshold.network/applications/tbtc-v2
https://docs.threshold.network/applications/tbtc-v2
https://cointelegraph.com/news/axie-infinity-s-ronin-bridge-hacked-for-over-600m
https://cointelegraph.com/news/axie-infinity-s-ronin-bridge-hacked-for-over-600m
https://bridge.renproject.io/

[Chol6]
[Wes-+20]
[Prel8]
[Bit25]
[Tod16]
[Vel25)]

[Mor25]
[Uni22]

[Suc24]
[Rif25]

[Sta23]

[Bit17]
[Bow+18]
[Vuol9]
[Cos+16]

[Hei+24]
[But-+24]

Joseph Chow. Linking the Chains with BTC Relay. 2016. https://medium.com/consensys-
media/linking-the-chains-with-bte-relay-5{fd2c8248.

Martin Westerkamp and Jacob Eberhardt. zkRelay: Fuacilitating Sidechains using
2kSNARK-based Chain-Relays. 2020. https://ieeexplore.iece.org/document /9229702.

James Prestwich. Cross-chain Auctions via Bitcoin Double Spends. 2018. https://medi
um.com/summa-technology/summa-auction-bitcoin-technical-7344096498f2.

Bitcoin.org. Null Data (OP_RETURN) Transactions. 2025. https://developer.bitcoin.
org/devguide/transactions.html#null-data (accessed May 11, 2025).

Peter Todd. Merkle Mountain Ranges. 2016. https://gnusha.org/pi/bitcoindev/2016051
7132311.GA21656Qfedora-21-dvm/.

Velora. Paraswap Aggregation Protocol. 2025. https://docs.velora.xyz/intro-to-velora/v
elora-overview /aggregation-protocol (accessed May 11, 2025).

Morpho. Bundler3. 2025. https://github.com/morpho-org/bundler3.

Uniswap. Permit2 and Universal Router. 2022. https://blog.uniswap.org/permit2-and-
universal-router.

Succinct Labs. SP1 Documentation. 2024. https://docs.succinct.xyz/docs/spl/introduct
ion.

Rift Research. Hypernode. 2025. https://github.com/riftresearch/protocol/tree/main /b
in/hypernode.

Bitcoin Stack Exchange. When Was The Most Recent Multiblock Reorg? 2023. https:
//bitcoin.stackexchange.com/questions/120130/when-was-the-most-recent-multiblock-
reorg.

BitMEX Research. A Complete History of Bitcoin’s Consensus Forks. 2017. https:
//blog.bitmex.com /bitcoins-consensus-forks/.

Rhys Bowden et al. Blocktimes. 2018. https://github.com/rhysbowden/blocktimes/tree/
master.

Aapeli Vuorinen. The Blockchain Propagation Process: a Machine Learning and Matriz
Analytic Approach. 2019. https://bitcoin.aapelivuorinen.com/thesis.pdf.

Victor Costan and Srinivas Devadas. Intel SGX Ezplained. 2016. https://eprint.iacr.org/
2016/086.pdf.

Ethan Heilman and Armin Sabouri. BIP 420. 2024. https://github.com/bip420/bip420.

Vitalik Buterin, Sam Wilson, Ansgar Dietrichs, and lightclient. EIP 7702. 2024. https:
//eips.ethereum.org/EIPS /eip-7702.

16


https://medium.com/consensys-media/linking-the-chains-with-btc-relay-5ffd2c8248
https://medium.com/consensys-media/linking-the-chains-with-btc-relay-5ffd2c8248
https://ieeexplore.ieee.org/document/9229702
https://medium.com/summa-technology/summa-auction-bitcoin-technical-7344096498f2
https://medium.com/summa-technology/summa-auction-bitcoin-technical-7344096498f2
https://developer.bitcoin.org/devguide/transactions.html#null-data
https://developer.bitcoin.org/devguide/transactions.html#null-data
https://gnusha.org/pi/bitcoindev/20160517132311.GA21656@fedora-21-dvm/
https://gnusha.org/pi/bitcoindev/20160517132311.GA21656@fedora-21-dvm/
https://docs.velora.xyz/intro-to-velora/velora-overview/aggregation-protocol
https://docs.velora.xyz/intro-to-velora/velora-overview/aggregation-protocol
https://github.com/morpho-org/bundler3
https://blog.uniswap.org/permit2-and-universal-router
https://blog.uniswap.org/permit2-and-universal-router
https://docs.succinct.xyz/docs/sp1/introduction
https://docs.succinct.xyz/docs/sp1/introduction
https://github.com/riftresearch/protocol/tree/main/bin/hypernode
https://github.com/riftresearch/protocol/tree/main/bin/hypernode
https://bitcoin.stackexchange.com/questions/120130/when-was-the-most-recent-multiblock-reorg
https://bitcoin.stackexchange.com/questions/120130/when-was-the-most-recent-multiblock-reorg
https://bitcoin.stackexchange.com/questions/120130/when-was-the-most-recent-multiblock-reorg
https://blog.bitmex.com/bitcoins-consensus-forks/
https://blog.bitmex.com/bitcoins-consensus-forks/
https://github.com/rhysbowden/blocktimes/tree/master
https://github.com/rhysbowden/blocktimes/tree/master
https://bitcoin.aapelivuorinen.com/thesis.pdf
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://github.com/bip420/bip420
https://eips.ethereum.org/EIPS/eip-7702
https://eips.ethereum.org/EIPS/eip-7702

